341 research outputs found

    Memorable And Secure: How Do You Choose Your PIN?

    Get PDF
    Managing all your PINs is difficult. Banks acknowledge this by allowing and facilitating PIN changes. However, choosing secure PINs is a difficult task for humans as they are incapable of consciously generating randomness. This leads to certain PINs being chosen more frequently than others, which in turn increases the danger of someone else guessing correctly. We investigate different methods of supporting PIN changes and report on an evaluation of these methods in a study with 152 participants. Our contribution is twofold: We introduce an alternative to system-generated random PINs, which considers people’s preferred memorisation strategy, and, secondly, we provide indication that presenting guidance on how to avoid insecure PINs does indeed nudge people towards more secure PIN choices when they are in the process of changing their PINs

    Feasibility Analysis of Pret a Voter for German Federal Elections

    Get PDF
    Abstract. Prêt a ̀ Voter is one of the most well-known and most extensively analysed electronic voting systems for polling stations. However, an analysis from a legal point of view has not yet been conducted. The purpose of this paper is to analyse the readiness of Prêt a ̀ Voter for legally binding federal elections in Germany. This case is of particular interest as Germany has with the Constitutional Court Decision from 2009 probably the most restrictive requirements on electronic voting in particular regarding the public nature of elections and verifiability respectively. While many aspects are analysed, some remain open for further legal and technical discussions. Thus, a final decision is not yet possible. Aspects analysed are the ballot paper layout, different processes from ballot printing through to the publishing of results, as well as verifiability, and the overall election management.

    Revealing cytotoxic substructures in molecules using deep learning

    Get PDF
    In drug development, late stage toxicity issues of a compound are the main cause of failure in clinical trials. In silico methods are therefore of high importance to guide the early design process to reduce time, costs and animal testing. Technical advances and the ever growing amount of available toxicity data enabled machine learning, especially neural networks, to impact the field of predictive toxicology. In this study, cytotoxicity prediction, one of the earliest handles in drug discovery, is investigated using a deep learning approach trained on a highly consistent in-house data set of over 34,000 compounds with a share of less than 5% of cytotoxic molecules. The model reached a balanced accuracy of over 70%, similar to previously reported studies using Random Forest. Albeit yielding good results, neural networks are often described as a black box lacking deeper mechanistic understanding of the underlying model. To overcome this absence of interpretability, a Deep Taylor Decomposition method is investigated to identify substructures that may be responsible for the cytotoxic effects, the so-called toxicophores. Furthermore, this study introduces cytotoxicity maps which provide a visual structural interpretation of the relevance of these substructures. Using this approach could be helpful in drug development to predict the potential toxicity of a compound as well as to generate new insights into the toxic mechanism. Moreover, it could also help to de-risk and optimize compounds

    Airborne MAX-DOAS Measurements Over California: Testing the NASA OMI Tropospheric NO2 Product

    Get PDF
    Airborne Multi-AXis Differential Optical Absorption Spectroscopy (AMAX-DOAS) measurements of NO2 tropospheric vertical columns were performed over California for two months in summer 2010. The observations are compared to the NASA Ozone Monitoring Instrument (OMI) tropospheric vertical columns (data product v2.1) in two ways: (1) Median data were compared for the whole time period for selected boxes, and the agreement was found to be fair (R = 0.97, slope = 1.4 +/- 0.1, N= 10). (2) A comparison was performed on the mean of coincident AMAX-DOAS measurements within the area of the corresponding OMI pixels with the tropospheric NASA OMI NO2 assigned to that pixel. The effects of different data filters were assessed. Excellent agreement and a strong correlation (R = 0.85, slope = 1.05 +/- 0.09, N= 56) was found for (2) when the data were filtered to eliminate large pixels near the edge of the OMI orbit, the cloud radiance fraction was2 km, and a representative sample of the footprint was taken by the AMAX-DOAS instrument. The AMAX-DOAS and OMI data sets both show a reduction of NO2 tropospheric columns on weekends by 38 +/- 24% and 33 +/- 11%, respectively. The assumptions in the tropospheric satellite air mass factor simulations were tested using independent measurements of surface albedo, aerosol extinction, and NO2 profiles for Los Angeles for July 2010 indicating an uncertainty of 12%

    Importance of reactive halogens in the tropical marine atmosphere: A regional modelling study using WRF-Chem

    Get PDF
    This study investigates the impact of halogens on atmospheric chemistry in the tropical troposphere and explores the sensitivity of this to uncertainties in the fluxes of halogens to the atmosphere and the chemical processing. To do this the regional chemistry transport model WRF-Chem has been extended, for the first time, to include halogen chemistry (bromine, chlorine and iodine chemistry), including heterogeneous recycling reactions involving sea-salt aerosol and other particles, reactions of Br with volatile organic compounds (VOCs), along with oceanic emissions of halocarbons, VOCs and inorganic iodine. The study focuses on the tropical East Pacific using field observations from the TORERO campaign (January-February 2012) to evaluate the model performance. Including all the new processes, the model does a reasonable job reproducing the observed mixing ratios of BrO and IO, albeit with some discrepancies, some of which can be attributed to difficulties in the model’s ability to reproduce the observed halocarbons. This is somewhat expected given the large uncertainties in the air-sea fluxes of the halocarbons in a region where there are few observations of seawater concentrations. We see a considerable impact on the Bry partitioning when heterogeneous chemistry is included, with a greater proportion of the Bry in active forms such as BrO, HOBr and dihalogens. Including debromination of sea-salt increases BrO slightly throughout the free troposphere, but in the tropical marine boundary layer, where the sea-salt particles are plentiful and relatively acidic, debromination leads to overestimation of the observed BrO. However, it should be noted that the modelled BrO was extremely sensitive to the inclusion of reactions between Br and the VOCs, which convert Br to HBr, a far less reactive form of Bry. Excluding these reactions leads to modelled BrO mixing ratios greater than observed. The reactions between Br and aldehydes were found to be particularly important, despite the model underestimating the amount of aldehydes observed in the atmosphere. There are only small changes to Iy partitioning and IO when the heterogeneous reactions, primarly on sea-salt, are included. Our model results show that the tropospheric Ox loss due to halogens is 31%. This loss is mostly due to I (16%) and Br (14%) and it is in good agreement with other estimates from state-of-the-art atmospheric chemistry models

    The influence of natural and anthropogenic secondary sources on the glyoxal global distribution

    Get PDF
    Glyoxal, the smallest dicarbonyl, which has recently been observed from space, is expected to provide indications on volatile organic compounds (VOC) oxidation and secondary aerosol formation in the troposphere. Glyoxal (CHOCHO) is known to be mostly of natural origin and is produced during biogenic VOC oxidation. However, a number of anthropogenically emitted hydrocarbons, like acetylene and aromatics, have been positively identified as CHOCHO precursors. The present study investigates the contribution of pollution to the CHOCHO levels by taking into account the secondary chemical formation of CHOCHO from precursors emitted from biogenic, anthropogenic and biomass burning sources. The impact of potential primary land emissions of CHOCHO is also investigated. A global 3-dimensional chemistry transport model of the troposphere (TM4-ECPL) able to simulate the gas phase chemistry coupled with all major aerosol components is used. <br><br> The secondary anthropogenic contribution from fossil fuel and industrial VOCs emissions oxidation to the CHOCHO columns is found to reach 20–70% in the industrialized areas of the Northern Hemisphere and 3–20% in the tropics. This secondary CHOCHO source is on average three times larger than that from oxidation of VOCs from biomass burning sources. The chemical production of CHOCHO is calculated to equal to about 56 Tg y<sup>−1</sup> with 70% being produced from biogenic hydrocarbons oxidation, 17% from acetylene, 11% from aromatic chemistry and 2% from ethene and propene. CHOCHO is destroyed in the troposphere primarily by reaction with OH radicals (23%) and by photolysis (63%), but it is also removed from the atmosphere through wet (8%) and dry deposition (6%). Potential formation of secondary organic aerosol through CHOCHO losses on/in aerosols and clouds is neglected here due to the significant uncertainties associated with the underlying chemistry. The global annual mean CHOCHO burden and lifetime in the model domain are estimated to be 0.02 Tg (equal to the global burden seen by SCIAMACHY over land for the year 2005) and about 3 h, respectively. The model results are compared with satellite observations of CHOCHO columns. When accounting only for the secondary sources of CHOCHO in the model, the model underestimates CHOCHO columns observed by satellites. This is attributed to an overestimate of CHOCHO sinks or a missing global source of about 20 Tg y<sup>−1</sup>. Using the current primary emissions of CHOCHO from biomass burning together with the anthropogenic combustion sources of about 7 Tg y<sup>−1</sup> leads to an overestimate by the model over hot spot areas

    Modelling constraints on the emission inventory and on vertical dispersion for CO and SO2 in the Mexico City Metropolitan Area using Solar FTIR and zenith sky UV spectroscopy

    Get PDF
    Emissions of air pollutants in and around urban areas lead to negative health impacts on the population. To estimate these impacts, it is important to know the sources and transport mechanisms of the pollutants accurately. Mexico City has a large urban fleet in a topographically constrained basin leading to high levels of carbon monoxide ( CO). Large point sources of sulfur dioxide (SO2) surrounding the basin lead to episodes with high concentrations. An Eulerian grid model (CAMx) and a particle trajectory model ( FLEXPART) are used to evaluate the estimates of CO and SO2 in the current emission inventory using mesoscale meteorological simulations from MM5. Vertical column measurements of CO are used to constrain the total amount of emitted CO in the model and to identify the most appropriate vertical dispersion scheme. Zenith sky UV spectroscopy is used to estimate the emissions of SO2 from a large power plant and the Popocatepetl volcano. Results suggest that the models are able to identify correctly large point sources and that both the power plant and the volcano impact the MCMA. Modelled concentrations of CO based on the current emission inventory match observations suggesting that the current total emissions estimate is correct. Possible adjustments to the spatial and temporal distribution can be inferred from model results. Accurate source and dispersion modelling provides feedback for development of the emission inventory, verification of transport processes in air quality models and guidance for policy decisions

    Replication Study: A Cross-Country Field Observation Study of Real World PIN Usage at ATMs and in Various Electronic Payment Scenarios

    Get PDF
    In this paper, we describe the study we carried out to replicate and extend the field observation study of real world ATM use carried out by De Luca et al., published at the SOUPS conference in 2010. Replicating De Luca et al.’s study, we observed PIN shield- ing rates at ATMs in Germany. We then extended their research by conducting a similar field observation study in Sweden and the United Kingdom. Moreover, in addition to observing ATM users (withdrawing), we also observed electronic payment scenarios re- quiring PIN entry. Altogether, we gathered data related to 930 observations. Similar to De Luca et al., we conducted follow-up interviews, the better to interpret our findings. We were able to confirm De Luca et al.’s findings with respect to low PIN shield- ing incidence during ATM cash withdrawals, with no significant differences between shielding rates across the three countries. PIN shielding incidence during electronic payment scenarios was sig- nificantly lower than incidence during ATM withdrawal scenarios in both the United Kingdom and Sweden. Shielding levels in Ger- many were similar during both withdrawal and payment scenarios. We conclude the paper by suggesting a number of explanations for the differences in shielding that our study revealed

    Comparison of aromatic hydrocarbon measurements made by PTR-MS, DOAS and GC-FID during the MCMA 2003 Field Experiment

    Get PDF
    A comparison of aromatic hydrocarbon measurements is reported for the CENICA supersite in the district of Iztapalapa during the Mexico City Metropolitan Area field experiment in April 2003 (MCMA 2003). Data from three different measurement methods were compared: a Proton Transfer Reaction Mass Spectrometer (PTR-MS), long path measurements using a UV Differential Optical Absorption Spectrometer (DOAS), and Gas Chromatography-Flame Ionization analysis (GC-FID) of canister samples. The principle focus was on the comparison between PTR-MS and DOAS data. Lab tests established that the PTR-MS and DOAS calibrations were consistent for a suite of aromatic compounds including benzene, toluene, p-xylene, ethylbenzene, 1,2,4-trimethylbenzene, phenol and styrene. The point sampling measurements by the PTR-MS and GC-FID showed good correlations (r=0.6), and were in reasonable agreement for toluene, C2-alkylbenzenes and C3-alkylbenzenes. The PTR-MS benzene data were consistently high, indicating interference from ethylbenzene fragmentation for the 145 Td drift field intensity used in the experiment. Correlations between the open-path data measured at 16-m height over a 860-m path length (retroreflector in 430 m distance), and the point measurements collected at 37-m sampling height were best for benzene (r=0.61), and reasonably good for toluene, C2-alkylbenzenes, naphthalene, styrene, cresols and phenol (r>0.5). There was good agreement between DOAS and PTR-MS measurements of benzene after correction for the PTR-MS ethylbenzene interference. Mixing ratios measured by DOAS were on average a factor of 1.7 times greater than the PTR-MS data for toluene, C2-alkylbenzenes, naphthalene and styrene. The level of agreement for the toluene data displayed a modest dependence on wind direction, establishing that spatial gradients – horizontal, vertical, or both – in toluene mixing ratios were significant, and up to a factor of 2 despite the fact that all measurements were conducted above roof level. Our analysis highlights a potential problem in defining a VOC sampling strategy that is meaningful for the comparison with photochemical transport models: meaningful measurements require a spatial fetch that is comparable to the grid cell size of models, which is typically a few 10 km2. Long-path DOAS measurements inherently average over a larger spatial scale than point measurements. The spatial representativeness can be further increased if observations are conducted outside the surface roughness sublayer, which might require measurements at altitudes as high as 10 s of metres above roof level.Alexander von Humboldt-Stiftung (Feodor Lynen fellowship)Henry & Camille Dreyfus Foundation (Postdoctral Fellowship in Environmental Chemistry
    • …
    corecore